Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. Soc. Bras. Med. Trop ; 53: e20200016, 2020. tab, graf
Article in English | LILACS | ID: biblio-1101450

ABSTRACT

Abstract INTRODUCTION: Sepsis is an important cause of mortality and morbidity, and inflammatory response and oxidative stress play major roles underlying its pathophysiology. Here, we evaluated the effect of intraperitoneal etanercept administration on oxidative stress and inflammation indicators in the kidney and blood of experimental sepsis-induced rats. METHODS: Twenty-eight adult Sprague Dawley rats were classified into Control (Group 1), Sepsis (Group 2), Sepsis+Cefazolin (Group 3), and Sepsis+Cefazolin+Etanercept (Group 4) groups. Kidney tissue and serum samples were obtained for biochemical and histopathological investigations and examined for the C reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), triggering receptor expressed on myeloid cells (TREM), and malondialdehyde (MDA) levels. RESULTS: The levels of TNF-α, TREM, and MDA in serum and kidney samples were significantly higher in rats from sepsis group than in rats from control group (p < 0.05). Group 3 showed a significant reduction in serum levels of TNF-α, CRP, and TREM as compared with Group 2 (p < 0.05). Serum TNF-α, CRP, TREM, and MDA levels and kidney TNF-α and TREM levels were significantly lower in Group 4 than in Group 2 (p < 0.05). Serum TNF-α and TREM levels in Group 4 were significantly lower than those in Group 3, and histopathological scores were significantly lower in Group 3 and Group 4 than in Group 2 (p < 0.05). Histopathological scores of Group 4 were significantly lower than those of Group 3 (p < 0.05). CONCLUSIONS: Etanercept, a TNF-α inhibitor, may ameliorate sepsis-induced oxidative stress, inflammation, and histopathological damage.


Subject(s)
Animals , Rats , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Tumor Necrosis Factor-alpha/blood , Sepsis/pathology , Oxidative Stress/drug effects , Etanercept/administration & dosage , Inflammation/prevention & control , Kidney/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Rats, Sprague-Dawley , Sepsis/blood , Disease Models, Animal , Etanercept/pharmacology , Inflammation/pathology , Injections, Intraperitoneal
2.
Braz. j. med. biol. res ; 50(6): e5868, 2017. tab, graf
Article in English | LILACS | ID: biblio-839308

ABSTRACT

We aimed to investigate the effect of etanercept, a tumor necrosis factor-α (TNF-α) inhibitor, on rat cardiomyocyte hypertrophy and its underlying mechanism. Primary neonatal rat cardiomyocytes were isolated from Sprague-Dawley rats. The model of rat cardiomyocyte hypertrophy was induced by endothelin, and then treated with different concentrations of etanercept (1, 10, and 50 μM). After treatment, cell counts, viability and cell apoptosis were evaluated. The mRNA levels of myocardial hypertrophy marker genes, including atrial natriuretic factor (ANF), matrix metalloproteinase (MMP)-9 and MMP-13, were detected by qRT-PCR, and the expressions of apoptosis-related proteins (Bcl-2 and Bax) were measured by western blotting. The protein levels of transforming growth factor-β1 (TGF-β1), interleukin (IL)-1β, IL-6, leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1) were determined using enzyme linked immunosorbent assay (ELISA) kits. In the present study, TNF-α level in cardiomyocytes with hypertrophy was significantly enhanced (P<0.05). Compared to the model group, cell number and viability were significantly increased and ratio of apoptotic cells was reduced by etanercept (P<0.05, P<0.01, or P<0.001). In addition, etanercept remarkably reduced the mRNA levels of ANF, MMP-9 and MMP-13, inhibited the expression of Bax, and increased the expression of Bcl-2 compared to the model group (P<0.05). ELISA results further showed that etanercept lowered the levels of IL-1β, IL-6, LIF and CT-1 but not TGF-β1 compared to the model group (P<0.05). Etanercept may protect rat cardiomyocytes from hypertrophy by inhibiting inflammatory cytokines secretion and cell apoptosis.


Subject(s)
Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cardiomegaly/metabolism , Etanercept/pharmacology , Myocytes, Cardiac/drug effects , Protective Agents/pharmacology , Animals, Newborn , Apoptosis/drug effects , Atrial Natriuretic Factor/metabolism , Cardiomegaly/chemically induced , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/drug effects , Disease Models, Animal , Inflammation/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/metabolism , Myocytes, Cardiac/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL